The Amended A and B Matrices in Regulators and Servos

L.A.S.
4/5/2016
In a regulator with pole placement:

\[u = -kx \quad \text{where if } u \text{ is scalar} \]

Then

- \(k \) is a \(1 \times n \) vector
- \(x \) is a \(n \times 1 \) vector

\[x = Ax + Bu = Ax + Kx = (A - BK)x \]

So \(\text{new } A = A - BK \)

In a servo, let \(y = Cx = [1 \ 0 \ 0 \ 0] x \uparrow \)

\(\Rightarrow y = x_1 \)

operating with \(x \), in servo mode

\[u = (r_1 - x_1)k_1 - (k_2x_2 + K_3x_3 - \cdots - K_nx_n) \]

\[= r_1k_1 - x_1k_1 - (k_2x_2 + K_3x_3 - \cdots - K_nx_n) \]

\[= r_1k_1 - (k_1x_1 + k_2x_2 + \cdots + K_nx_n) \]

\[= r_1k_1 - kx \uparrow \text{vector} \quad \text{vector} \quad n \times 1 \]
substituting in the main equation:

\[x = Ax - Bu = Ax + B(Kr_i - Kx) \]

\[= Ax + BKr_i - BKx \]

\[= Ax - BKx + BKr_i \]

\[= (A - BK)x + (BK_i)r_i \]

Let the new input be \(r_i \)

\[\Rightarrow \boxed{B_{\text{new}} = BK_i} \]

and \[A_{\text{new}} = A - BK \] \(\blacksquare \)